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Abstract

With the increasing demand for a more secure and faster web, existing technologies
are reaching their limits. The Transmission Control Protocol, which is currently
used, introduces latency when setting up a secure connection and is hard to update.
Therefore, Google introduced a new transport layer protocol in 2013 called Quick
UDP Internet Connections (QUIC). It is designed to be encrypted by default and
have low-latency. It is built on top of the User Datagram Protocol (UDP) which
makes it possible to deploy changes rapidly so that it can keep up with the developments
in modern internet. In this thesis we look at Google’s implementation of the QUIC
server and perform two types of analyses. First, we learn a model from the implementation
and use it to check if it matches the specified requirements. Second, we test the
robustness of the implementation.
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1Introduction

Computers are being used for a large variety of tasks. This includes internet banking,
buying clothes online or navigating an aircraft at high altitude between waypoints.
This requires them to frequently interact with other computers. To ensure successful
communications, a well-defined set of rules is needed. This standardizes the exchanged
messages even if several vendors are involved. If there is no such standard, it is hard
to guarantee that different vendors implement the same message formats, sequence
of messages or responses to messages.

Such a predefined set of rules is called a protocol [Tre01]. These rules can be
written down as text or it can be presented more graphical. A computer is not able
to understand this format directly. It needs to be implemented in software which
can then be executed.

The problem with software is that errors can be made, which can cause it to behave
incorrectly. This can have negative consequences depending on the protocol and
severity of the flaw. Therefore, it is important that implementations of protocols
are thoroughly tested to ensure that they are in line with their specification. This is
called conformance testing.

However, it is hard to analyse protocol implementations by hand, especially if they
stem from complex specifications. An approach which does not require complete
manual testing, is state machine inferencing. Here, we infer an abstract representation
of the implementation, known as a model or more formally as Mealy machine. This
process is also known as model learning or state machine learning. The resulting
model can be expressed in a graphical or textual format. In general, it is easier to
reason about a model than the implementation.

The computers involved in communication are distributed over the world. There
are important reasons for distributing computers [Nad+06]:

• Functional separation: Based on functionality / services that are provided.

• Reliability: Storing and replicating data or services at different locations.
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• Scalability: Adding more resources to increase performance or availability.

• Economy: Sharing resources with others to lower the cost.

However, there are also challenges with distributed systems. For example, there is
no central entity that knows the global state of the system. This is challenging when
faults need to be restored or when consensus is needed.

For a major internet company like Google, it is important that they can serve as
many users as fast as possible. If we look at the past few years, Google has made
much effort to achieve this goal. First, they built a carrier-grade network for their
servers to use. This kind of network offers extreme reliability and provides very
fast fault recovery through redundancy [Riv09]. Next, they engineered a new
browser and were involved in the development of HTTP/2 [Iye13]. HTTP/2 offers
performance improvements as it is not blocking, it incorporates header compression
to reduce overhead and is represented in binary form rather than textual. The last
property makes HTTP/2 more efficient to parse, more compact in transit and are less
error-prone [IET17]. More details on HTTP/2 are described in Section 2.1.2.

If we look at Figure 1.1, we can see that the connection between the browser
of the user and the Google server was left untouched. This is the level where
transport protocols play a role. These protocols are responsible to deliver messages
between applications. In order to also enhance the performance at this level, Google
developed Quick UDP Internet Connections (QUIC) in 2013 [Lan+17]. It guarantees
that messages are delivered and it provides a secure and authenticated channel on
which these messages are transported.

1.1 Contributions & Overview

In this thesis we analyse the server implementation of QUIC. We perform two
different types of analysis. First, we learn a model from the implementation. This
model formally known as a state machine or Mealy machine contains a number
of states. Between these states there are transitions. The transitions represent the
changes in the internal state of the system when it receives certain input. We use the
learned model to compare the implementation with its specification. In the second
analysis, we check the robustness of the implementation by sending unknown /
malformed inputs and see if the implementation is able to handle this.

This thesis is divided in the following chapters:

1.1 Contributions & Overview 2
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Figure 1.1. Google’s performance efforts over the years [Iye13]

• Chapter 2 provides a theoretical background of the QUIC protocol. We describe
Google’s design decisions, the available packets and their formats. In addition,
we mention how state machine inferencing works. We provide an example of
a concrete learning algorithm.

• Chapter 3 illustrates the set-up which we used to learn the state machine of
QUIC. We describe some obstacles and why some approaches did not work in
our study. Additionally, we briefly mention the background of fuzzing, which
is another name for robustness testing. We describe the tool we use to fuzz
the QUIC server.

• Chapter 4 shows the learned model. We discuss results from state machine
inferencing and from the fuzzing.

• We conclude in chapter 5 with a summary, a discussion and mention ideas for
future work.

1.1 Contributions & Overview 3



1.2 Related Work

The idea to use model learning to analyse software was introduced in [Pel+99].
They want to know whether a given implementation, with unknown internals,
satisfies certain specified properties. One of the procedures they mention is an
algorithm for learning models using two types of queries, called L∗ [Ang87]. We
use this algorithm in this thesis and we discuss it in more detail in Section 2.2.1.

There have been a lot of studies about state machine inferencing and its applications.
We would like to mention a few studies that have learned models from implementations
of several networking protocols. This is one of the goals of this thesis. First, Paul
Fiterău-Broştean performed extensive research in his PhD thesis [FB18] on the topic
of model learning for the analysis of network protocols. He applied this technique
to learn and check models of SSH implementations and TCP implementations on
Windows machines. A similar approach was used to infer models on TLS implementations
[Aar+13]. In his PhD thesis, Joeri de Ruiter, learned models from several bankcard
vendors [Rui15]. It was shown that there are differences between several vendors
while implementing the same specification. Some other interesting fields of application
are electronic passports [Aar+10] and industrial control systems [Ker17].

These studies have used an active approach to learn these models. Here, messages
are actively being sent and received to the System under Learning (the implementation
we want to learn). There are also studies that have tried a passive approach. Here,
they learn a model based on the logs of previous executions or use network traces
from specific applications [Wan+11]. The downside of using passive approaches
is that the learned model is only as good as the data provided by the previous
executions of the applications.

A research in 2017 also constructed a state machine from QUIC, but they used a
passive approach by looking at the log files created during the execution of the
protocol [Kak+17]. The goal was to run QUIC in a large number of different
environments (several mobile and desktop devices with different operating systems)
and to use the state machine to understand differences across versions of QUIC and
in each of the different environments. In this thesis, we perform active learning of
the QUIC protocol. We do not use log files but observe the output of the implementation
when actively sending input to it.

With state machine inferencing we learn a model and compare it with its specification.
This specification describes some data format and what sequence of these messges
describe a valid sequence. The implementation of a protocol can not be correct
unless it is able to validate input correctly. If the received input is not correct, the

1.2 Related Work 4



implementation needs to be able to detect this [Sas+13]. Therefore, it is good to
test what happens when an incorrect data format is used or when some invalid data
is sent.

This is where fuzzing is used to send invalid data and observe what happens. There
are two types of fuzzing. First, there is blackbox fuzzing. It is unaware of the data
structure of a protocol. This makes it easy to create and fast in execution, since it
just creates random data and provides it to the fuzz target. This target is formally
known as the System under Test. The other type is whitebox fuzzing. The idea of
whitebox fuzzing is to mix fuzz testing with dynamic test generation. It is smarter
and more complex than blackbox fuzzing. This increased complexity has a negative
effect on the performance of the fuzzer. An example is SAGE which is developed by
Microsoft [God+08; God07]. Another example of a whitebox fuzzer is LibFuzzer,
which we have used in this thesis to fuzz the QUIC server.

In practice, both types of fuzzers are able to find bugs. Once an application has
already been fuzzed by a blackbox fuzzer, it is more effective to use an intelligent,
white-box fuzzer to find bugs that are more complex to find.

If we look at QUIC, there has also been some studies [Lyc+15; Car+15] about it.
Google claims that QUIC offers performance improvements. Especially if you give
a product such a name, you stimulate people to find out if it is as quick as the
name suggests. In one study [Meg+16] it was shown that in more than 40% of
their scenarios, the page load times significantly improved with the experimental
version of QUIC compared to traditional TCP and HTTP/1.x. However, the study
also showed that QUIC cannot use the full capacity of high speed links. In addition,
network administrators may also limit QUIC traffic due to security concerns as it is
built on top of UDP (see Chapter 2).

Another field where QUIC has improvements over existing procotols is security. It
provides a secure (authenticated and encrypted) channel by default. There have
also been studies about its security. One of the studies found that it was possible
to fail the handshake due to an inconsistent state between the client and the server.
This makes the QUIC fallback to TCP with TLS. This results in more latency and in
the end could be used to mount denial-of-service attacks [Lyc+15].

Another security aspect which was examined is its key exchange. In Chapter 2 we
see that QUIC uses a multi-stage key exchange. In 2014 it was shown that the
key exchange protocol in QUIC meets the security properties as suggested by the
designers [FG14].

1.2 Related Work 5



One general remark about these studies is that QUIC is still heavily under development.
In the past, this meant that the code was changed drastically every few months. This
resulted that some studies were outdated before they were published.

1.2 Related Work 6



2Technical Background

In this chapter we discuss the technical background of Google’s QUIC network
protocol. Furthermore, we look at the general process of inferring models (i.e. state
machines) from implementations. We start with a brief discussion of networking
protocols in general.

2.1 Networking Protocols

Computers often need to communicate with other computers. This communication
needs to be standardized in the form of a protocol which defines a set of rules
that manage the content and format of the exchanged messages. In addition,
a protocol may also specify actions that need to be taken upon certain received
messages. If there were no such standards it is up to individual vendors to define
message formats. This would reduce interoperability between different vendors
[FB18; SG13; BS12].

Once a message is created conforming the rules defined in the protocol, it is sent
to the other party. Communication over the internet is divided into five layers.
These layers provide some structure to the design of the Internet Protocol (IP). In
addition, each layer can focus on solving problems specific to that layer and it can
offer certain services to the layers above. We can distinguish five layers, see Figure
2.1:

• Application Layer: Network applications such as web browsers with their
protocols and application specific data (e.g. HTTP).

• Transport Layer: Transports application layer messages between application
endpoints.

• Network Layer: Moves network-layer packets (datagrams) from one host to
another.

• Internet Layer: Routes a datagram through a series of routers and switches
between the source and the destination.
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Link Layer
(Ethernet, X.25, ARP, OSPF, NDP, ...) Header Header Header Header

Internet Layer
(IP, ICMP, IGMP) HeaderHeaderHeader

Transport Layer
(TCP, UDP, QUIC) HeaderHeader

Application Layer
(FTP, SMTP, SNTP) Header

Application Data

Figure 2.1. Internet Protocol stack [UK18]

• Link Layer: Moves individual bits within a frame from one node to the next
one.

Figure 2.1 shows the layers of the Internet protocol stack. We can see that messages
from higher levels are encapsulated in lower level packets. Each level adds the
information it needs in a header and hands the packet over to the lower level.

There are currently two well-known protocols that implement the services of the
transport layer. First, we have the Transmission Control Protocol (TCP) [Rfca]
which provides a connection-oriented service to the application layer. This includes
guaranteed delivery, fragmenting a long message into multiple shorter ones and a
congestion-control mechanism. It controls the transmission rate when the network
is congested. Next, we have User Datagram Protocol (UDP) [Rfcb] which provides
a connectionless service to the application layer. It does not offer reliable delivery
or congestion control.

TCP is more commonly used as a transport layer protocol due to the services and
guarantees it provides [Cen18]. However, it is hard to deploy changes in TCP.
This is because TCP is implemented in the kernel of operating systems. Therefore,
making a change in TCP requires an update in operating systems. In addition,
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there are middleboxes1 and legacy systems that make the deployment of updates
challenging.

This forms a bottleneck especially now that optimizing for latency and providing
encryption at the transport layer became a concern [Rüt+18]. This demand is
caused due to an increase in usage of interactive web applications. Paradoxically,
encryption over TCP is provided by using Transport Layer Security (TLS) [RD08] on
top of TCP which introduces more latency. There are approaches to overcome these
drawbacks. However, these cannot be incorporated since updating TCP is not easy
because of legacy systems, updating kernels and having middleboxes. Therefore,
there is a need for a transport layer which can be easily updated.

2.1.1 QUIC: Quick UDP Internet Connections

QUIC is described as an encrypted, multiplexed and low-latency transport protocol,
designed to improve transport performance and enable rapid deployment [Lan+17].
We have two parties in QUIC. First, we have the client which can connect to a
server and make requests. Next, we have the server which accepts connections and
responds to requests. Examples of clients are web browsers (Chrome) and mobile
applications (YouTube).

Google added QUIC to Chrome in June 2013 as an optional functionality. It started
with very limited features. As of now, it is enabled for almost all Chrome users since
it addresses several shortcomings in TCP and offers performance improvements
[Lan+17]. QUIC is built on top of UDP in user space2, which allows for easier
deployment of changes as middleboxes work at a lower level. Additionally, it is
possible to update only the user space process, without updating the underlying
kernel.

Design decisions

There are several design decisions that enable QUIC to address some issues in
TCP. One issue is addressed by combining cryptographic and transport handshakes
which reduces the set-up latency to 0 round-trip time (RTT) when connecting to
the same server. We describe latency of networking protocols by their round-trip
time, which is the interval between the sending of a packet and the receipt of
its acknowledgement [KP87]. The actual value of one RTT depends on network

1A device that transforms, inspects, filters or manipulates traffic for other purposes than packet
forwarding. For example firewalls, intrusion detection systems, load balancers [Lan+17; Wik].

2Where normal processes run.
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conditions and speed of the client or server. Nevertheless, this metric is used to
denote the number of packets that need to be exchanged. Throughout this thesis
we use the terms packet, message, request and response interchangeably.

There are three scenarios for connection establishment, also known as handshake.
This is shown in Figure 2.2 [LC16; Lan+17]:

• Initial handshake: The client initially has little to no information about the
server. The client starts with a client hello (CHLO) message which will be
rejected by the server. This is done by responding with a rejection (REJ)
message. This contains a server configuration with its long-term Diffie-Hellman
public value, a certificate chain authenticating the server and a timestamp.
The exact content of the messages is discussed in the next section. Now
that the client has more information regarding the server, it can send a new
complete CHLO message containing its initial tags and the received ones from
the REJ message. If the handshake was successful, the server responds with
an encrypted server hello (SHLO) message. This message is authenticated
and encrypted using the shared key which is computed using the client’s and
server’s public value. The SHLO message includes the server’s ephemeral Diffie-
Hellman public value, which is used to compute the ephemeral session key.

• Repeat handshake: The client has already seen the REJ message in some
previous connection establishment. It stored the tags from the REJ message so
that it can craft the complete CHLO message at once. Again, if the handshake
was successful, the server responds with an encrypted SHLO message. Using
the initial shared key, both parties can compute the ephemeral keys to send
and receive any further messages. If the client wishes to achieve 0-RTT
latency, then it must encrypt the request with the initial keys and send it
before it receives an answer from the server. In order to achieve this, the
server also stores the client’s nonce and it’s public value such that it can
compute the shared key.

• Failed 0-RTT: In the case of sending expired server information in the full
CHLO, the client receives a REJ message. The handshake continues as if it was
an initial handshake.

In Table 2.1 we have summarized the different latencies between QUIC, TCP and
TCP together with TLS.

Another issue QUIC addresses is head-of-line blocking. This occurs when a packet
is lost in TCP and must be retransmitted. TCP delivers packets in the same order

2.1 Networking Protocols 10



Client Server

Initial CHLO 

REJ 

Complete CHLO 

SHLO 

Encrypted Request 

Encrypted Response 

Initial 1-RTT Handshake 

Client Server

Complete CHLO 

SHLO 

Encrypted Request 

Encrypted Response 

Successful 0-RTT Handshake 

Client Server
Complete CHLO 

REJ 

Complete CHLO 

SHLO 

Encrypted Request 

Encrypted Response 

Rejected 0-RTT Handshake 

Encrypted Request 

Figure 2.2. Overview of different QUIC handshakes [Lan+17].

TCP TCP + TLS QUIC
First connection 1 RTT 3 RTT 1 RTT

Repeated connection 1 RTT 2 RTT 0 RTT
Table 2.1. Connection RTT for TCP, QUIC and TCP with TLS [Meg+16].

as they have been sent, therefore all packets must wait until the lost packet is
retransmitted and received. QUIC solves this by using a lightweight abstraction
called streams, see Figure 2.3. It can be seen as a reliable bidirectional bytestream
which can transfer up to 264 bytes in total per stream. Here we see N streams.
In stream 1 there is bidirectional stream with one request message containing
a single frame and one response message containing two frames. One of them
acknowledges a previous message and one of them is the response data itself.
Streams are created implicitly by sending data on an unused stream ID. Closing
a stream is explicit by setting the FIN bit in the stream header [Lan+17; LC16].

In general, a single QUIC connection consists of multiple streams. Each stream is
cut into frames. We have different types of frames. First, we have regular stream
frames that carry data used for connection establishment (e.g. CHLO, REJ). These
use the fixed stream 1. Next, we have acknowledgment frames which are discussed
later in this chapter. There is also a frame used for congestion control, which we do

2.1 Networking Protocols 11



Stream 1 

Request message 
Stream frame (stream 1) 

Response message 
ACK frame (stream 1) Stream frame (stream 1) 

Stream N ...

Connection

Figure 2.3. QUIC connection with multiple streams. Each stream has a bidirectional flow
of frames with data [Gri13].

not send in our setting since we only have a single user on a local network. Next,
there are two frame types to close the connection which are discussed later.

If a packet is lost, it only impacts those streams whose data was carried in that
packet. Subsequent data received on other streams is continued to be reassembled
and delivered to the application layer [LC16; Gri13]. Each stream has its own ID
where odd IDs are used for client-initiated streams and even IDs for server-initiated
streams, to avoid collisions.

Packets are authenticated and encrypted using AES-GCM. At the time of writing,
Google uses a custom scheme for cryptography [LC16]. Google needed a secure
scheme when development started, but TLS1.3 [Res18] was not ready at that time
[LC16].

Before the server and the client can encrypt or decrypt, they must first compute
the same shared key. This is done in a few steps and depends on whether they are
computing the initial or ephemeral key:

• Initial key computation:

1. Perform Elliptic-Curve Diffie-Hellman with the two public values.

2.1 Networking Protocols 12



2. Perform an HMAC-based Extract-and-Expand key derivation [KE10]. It
uses SHA256 as hashing algorithm. As a salt it uses the client nonce
concatenated with the server nonce. As info it uses the fixed label QUIC
key expansion followed by a 0-byte, the connection id, the bytes from
the CHLO packet, the bytes from the server config and the decoded leaf
certificate. The result is 40 bytes composed of two keys (16 bytes) and
two initialization vectors (4 bytes). We found that the server nonce is
fixed when computing the initial key, even though the server sends its
nonce in the REJ message. We are not sure why this is fixed, maybe it
is present because of some debugging functionality when computing the
key.

3. Diversify the server key and IV by performing another round of hash-
based key derivation. Again, it uses SHA256 as algorithm. For salt, the
diversification nonce is used, which is present in the REJ packet. As
info parameter, the fixed label QUIC key diversification is used. In
contrast to the previous deriviation, the length is 20 bytes since only a
single key and IV is used.

• Ephemeral/Forward-secure key computation has the same steps as the
initial key, but without diversifying the key. It uses QUIC forward secure
key expansion as info parameter in the hash-based key derivation instead of
QUIC key expansion. Here, we do not observe this fixed server nonce.

Using ephemeral keys results in perfect forward secrecy for a single connection
[Cho02; Kra05; LC16], since there is a new key generated per session. Once such
a key is no longer used and is erased from memory, there is no way to find this key
except by cryptanalyzing the Diffie-Hellman exchange.

2.1.2 QUIC Connection in detail

In this section we take a detailed look at a single QUIC connection from establishing
a connection, sending messages, acknowledging them, to terminating an existing
connection.

There are two versions of the QUIC protocol. First, there is a version by Google
[Cyr+16]. It is used in the Chrome browser and the servers of Google. Next, there
is the version from IETF [IT18] which will standardize Google’s initial work.

We choose to use the Google variant. The reason is that IETF publishes new draft
specifications very frequently. Therefore, the implementations of IETF always fall
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behind on the documentation and is not used in practice. We are not able to test
these unimplemented specifications. In addition, Google has an implementation
which is already used on a large scale and is open-source available [Lan+17].

However, there exists a drawback. The specification of Google’s variant is not in
line with their implementation. The latest version of the specification contains a
lot of unfinished sections and does not even mention the latest implemented QUIC
versions.

General Header

We start the description with the general header which is present in plaintext in
every packet. It can consist up to six fields. Every header (see Figure 2.4) starts
with an eight-bit public flag including:

U: Unused / Reserved bit.

M: Multipath mode.

PNR: Packet number length: two bits to indicate whether a packet number is 1, 2,
4 or 6 bytes.

CIDL: Connection ID present: indicates whether the 8 byte connection ID is present.

DNP: Diversification Nonce present: indicates the presence of a 32 byte diversification
nonce. This nonce is generated by the server and is only used in the server to
client direction. It ensures that the server is able to generate unique keys per
connection. Otherwise, a repeated CHLO with the same connection ID results
in the same initial encryption keys. If we allow the server to generate this
nonce, it prevents a client from deriving the same initial keys for two distinct
connections since this nonce introduces randomness [IT].

RST: Reset packet: indicates that the packet is a public reset packet.

VER: Version negotiation: if set by the client this means that the header has a
version number. This must be set by the client in all packets until the server
has agreed to the proposed version. If set by the server, the packet is a version
negotiation packet. This lists all the supported versions by the server from
which the client can then make a choice.

2.1 Networking Protocols 14
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U M PNR CIDL DNP RST VER

Figure 2.4. QUIC Header Public Flags

After the public flag, the header continues with the connection ID. QUIC connections
are designed to remain established even when a connection is lost. The four-
tuple (source IP, source port, destination IP, destination port) traditionally used
in TCP is insufficient for this. The third field is an optional four byte QUIC version
represented as Q followed by the version number (Q039 for version 39). The fourth
field is the optional diversification nonce. The fifth field is the variable-sized packet
number. It should always start at 1. The last field is the message authentication
hash.

Before the handshake is completed, the messages are sent in plaintext. In order to
guarantee integrity during the handshake, a checksum is computed over the content
of the packet. This achieves protection against packet corruption. This is done using
a non-cryptographic hash function called FNV-128A [Fow+17].

The reason for choosing this hash is unspecified. We believe that the reason has to
do with its performance. According to a 2014 study, [Est+14] FNV is one of the
most efficient and widely used hash functions. It is also used in Linux, Twitter and
several game consoles.

CHLO

The client starts with sending a client hello (CHLO) message, see Figure 2.5. In the
case of an initial CHLO, not all information required by the server is present. The
documentation of QUIC was incomplete, so we built this packet based on a different
open-source implementation of the client [Cle18].

After the general header, this message is composed of the following four fields.
First, there should be a frame type that indicates it is a stream. Moreover, it uses
the reserved stream ID for crypto messages. Next, there is the tag that identifies
the stream as CHLO. Finally, there is a list of tag-value pairs used for the transport
and security handshake. In order to make parsing easier, the number of pairs is
displayed before the list itself. These pairs are represented as 7-bit ASCII strings.
In our case, we send the following pairs of values to the server in the initial CHLO
message [LC16]:

• Server Name Indication: fully quantified DNS name of the server.
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Figure 2.5. Handshake packets

• Version: what version the clients wishes to use. The client can use Q099 to
retrieve a list of supported versions by the server.

• Common Certificate Sets: list of 64-bit FNV hashes of sets of common certificates
that the client possesses.

• Proof Demand: a list of tags describing the types of proof acceptable to the
client, in order of preference. Currently only X509 certificates are defined.

• Some padding.

Other handshake messages also begin with the general header, then have some
frame information and end with a set of tag-value pairs.

REJ

When sending this initial CHLO message, the server rejects it. The server responds
with a REJ message which is composed similarly to the CHLO. The tag identifies that
it is a REJ message. In our case it was composed of the following tag-value pairs
[LC16]:

• Source Address Token: authenticated-encrypted block that contains at least
the client’s IP address and a timestamp by the server. Clients can include the
source address token in future requests in order to demonstrate ownership of
their source IP address. This is used when sending the full CHLO message. If
the token has expired, the client needs to request a new one.

• Server Nonce.
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• Proof Signature: a signature of the server config by the public key in the leaf
certificate.

• Server Config: message containing the server’s serialized config. The config
contains an ID, supported key exchange algorithms, supported authenticated
encryption algorithms, list of supported QUIC versions by the server.

• Reasons for sending the REJ. In our case this was because it was missing the
server config ID in the CHLO message.

• Server Config time-to-live: duration, in seconds, that the server config is valid
for.

• Encoded certificate chain.

The elements for the rejection message are optional, but the server must allow the
client to make progress [LC16].

SHLO

The received tags are combined with the initial tags to craft another CHLO message.
If the message authentication hash is correct and all required tags are correct and
present, the server responds with an encrypted server hello (SHLO) message.

This packet also has the general header and a set of tag-values pairs. There are two
important pairs which are used to compute the ephemeral keys. First, there is the
public value of the server, this is used when computing the ephemeral shared key.
Next, there is the server nonce which is used when performing the hash-based key
derivation.

Now that the client has computed the ephemeral keys it can send encrypted requests,
receive responses, send acknowledgements and close the connection.

Acknowledgements

Acknowledgements are sent in a special frame, the ACK frame. This frame is used to
inform the other party what packets have been received and which are still missing.
It is also used to send some timing information.
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The ACK frame is composed of the following fields:

• Frame type: 8-bit value starting with 01 to indicate it is an ACK frame. Next, a
bit indicating whether this frame acknowledges more than one acknowledgement
range. Next, there is an unused bit. The following two bits indicate the size
of the largest acked packet. It can be 1, 2, 4 or 6 bytes long. Finally, there are
another 2 bits that indicate the length of the missing packet sequence number
delta. This field can have the same lengths as the largest acked.

• Largest acked: the largest observed packet number.

• Delta time: the time between observing the largest packet number and sending
this acknowledgement in microseconds. The format is loosely modelled after
IEEE 754. This is send to make a better estimation of the actual value of the
RTT. This helps in analysing the conditions of the network.

• Variable sized packet number delta.

• Number of timestamps.

We observed an undocumented pattern in the acknowledgements. The first ACK
frame always has two additional trailing bytes, whereas later frames do not have
this. Contacting the developer of the client did not help as he was not aware of this.
The documentation of the acknowledgement frame did not mention this behavior.
It is hard to understand it, since both frames use the same frame type. Therefore,
it is not possible for the client or server to know whether this frame will have the
trailing bytes or not. We feel that this part is outdated from the documentation
and has been replaced in the implementation. This made it challenging for us to
correctly create and parse this frame type.

After the ephemeral keys have been computed this frame type is send encrypted.
During the handshake, it is sent in plaintext.

It is possible to inform the other party that certain packets do not need to be
acknowledged any more. In that case a STOP_WAITING frame can be send. This
frame has the type of value 0x08 and has another field that indicates what the
lowest packet number is for which it will send acknowledgements. In other words,
the other party can stop waiting for acknowledgements lower than the specified
packet number.
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HTTP/2 over QUIC

The transport layer moves packets with application-layer content. The most used
protocol on that layer is HTTP [Car+15].

Despite its popularity, there are some inefficiencies in HTTP/1.1 that obstruct the
creation of a faster internet [Car+15]. For example, HTTP only allows one outstanding
request per TCP connection. Using multiple TCP connections, which is done now,
to issue parallel requests is counter-productive due to the congestion control used
in TCP and it is unfair as browsers are using more network resources [IET17].

This was the reason for Google to create SPDY [BP12] which has been standardized
as HTTP/2 [Bel+15].

Some of the design decisions that cause performance improvements are [IET17;
Bel+15]:

• It is binary, instead of textual. This makes it more efficient to parse, more
compact in transit and less error-prone. This is because there is no need to
handle whitespaces, capitalization, line endings and blank lines. In HTTP/1.1
there are four different methods to parse a message. In HTTP/2 there is just a
single method to do so.

• It is fully multiplexed. This allows for multiple requests and response messages
to be in transit at the same time. This is done similarly to QUIC by using
multiple streams with frames that either hold HTTP headers or data, see
Figure 2.3 [Gri13].

• It incorporates header compression using HPACK [PR15]. Given a webpage
with 80 assets (which is normal in today’s web) and each request has 1400
bytes of headers (because of cookies), it takes around 8 round trips to only
get the headers across. If we apply compression this could be done in a single
roundtrip or within a single packet. This reduces the latency noticeable.

QUIC integrates HTTP/2 mechanisms in order to reduce complexity. For example,
this is visible in stream management. QUIC handles most of the stream management.
The stream IDs from HTTP/2 are replaced by those from QUIC. It also uses a dedicated
stream ID to send the compressed headers used in HTTP/2.
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Connection termination

At the end of the lifetime, the connection should be terminated. This can be done
using two different frames. First, there is a CONNECTION_CLOSE frame. This can be
used to notify that the connection is being closed. If there are streams in transit,
they are implicitly closed when the connection is terminated. Second, there is the
GOAWAY frame. This can be used to notify that the other party should stop using
the connection as it will likely be aborted in the future. Current active streams are
continued to be processed, but the sender of this stream does not initiate or accept
any new streams. Ideally, a GOAWAY frame is sent in contrast to a CONNECTION_CLOSE
frame [Cyr+16].

It is also possible that a connection times out because one of the parties does not
respond anymore. The default timeout is 30 seconds, but this can be adjusted
by setting the ICLS parameter in the connection establishment phase. If there is no
network activity for the duration of the timeout, the connection is closed. When this
occurs a CONNECTION_CLOSE frame is sent. It is also possible to close the connection
silently. This happens when it is too expensive to send an explicit close. Examples
are when the network is too congested [Cyr+16].

At any time, it is also possible to terminate the connection abruptly. This is done by
sending a PUBLIC_RESET packet. This is equivalent to TCP RST [Cyr+16].

2.2 State Machine Inference

We continue with testing protocol specifications and in particular the method of
model learning. We also provide an example of learning a model ‘by hand’.

Testing software is an important aspect of the software development lifecycle, since
it enables us to find errors in software by performing experiments. The goal is
to gain confidence that during normal operation the system operates as intended.
Usually, there is only a limited amount of time for testing and it only allows to show
the presence of errors, not the absence of faults [Dij79]. Therefore, we cannot
ensure correctness of an implementation [Tre92].

In general, a protocol specification is a detailed document that describes the internals
of a protocol. If the description is not formal, the standard might lead to different
implementations due to ambiguity. This could result in two versions which are
incompatible. Even if the description was formal, differences can emerge due to
some parts implemented incorrectly [SL89].
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Testing whether an implementation is conform its specification can be done in
multiple ways. One of the simplest methods is to derive a series of tests from the
specification and apply them to the implementation [FB18]. These tests need to
be derived and maintained manually. This is time consuming and the effectiveness
depends on whether all corner cases are considered while writing these tests.

Another approach is to use model-based testing. This addresses some of the shortcomings
of manual testing. It is able to automatically derive and execute the tests based
on a model of the specification. This model covers all important aspects of the
specification in a formal way. The problem is that most specifications are textual and
at high level. Therefore, deriving a model from its specification is not trivial. Even
if we were able to derive it, this model needs to be updated when the specification
is adapted [FB18].

Since most specifications do not include a model, we try to automatically generate
it from the implementation. This is also called model learning or state machine
inferencing. There are multiple methods of doing this. It can be done by analyzing
the code or mining the software logs. Depending on the approach, different models
can be inferred [Vaa17].

In our approach we consider two conditions when learning the model. First, we
apply the approach of black-box learning. In this setting we do not need to have
access to the code in contrast to white-box learning. Even though we have access to
the code, we chose black-box learning as it is easier to use since we do not need to
have thorough understanding of the source code. However, the white-box approach
ensures that all the statements in the code is covered. One example of white-
box model learning is Predicate-based SYmbolic COmpositional Reasoning (Psyco)
where it uses the source code to explore a large number of program execution paths
[Mue+17].

The next condition we have is to apply active learning. This means that we are
actively performing experiments on the software. In contrast to passive learning
where previous runs of the software are analyzed, this has the advantage that we
can learn models of the full behavior of the software instead of just specific runs.
This increases the completeness of the learned model [Vaa17].

2.2.1 L* Algorithm

In order to learn a model we need two parties. First, there is a learner that wishes
to learn an initially unknown empty set U efficiently. This set is fixed over a known
finite alphabet, A. For example, we have only the letters a, b in our known alphabet
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A = {a, b}. The set we want to learn contains only those elements that have an
even number of a’s and an even number of b’s. In that case, we know that aa is part
of U , but ab is not. We call aa and ab words, because they are composed of multiple
letters from the alphabet.

The learner has information about a finite collection of strings over A. These can
be classified as members or non-members of the set it wishes to learn. Second, we
have the teacher which can provide a source of helpful examples.

The learner may ask the teacher for help. However, the learner should not ask for
too much help since this makes the learning process inefficient [Ang87]. To realize
this, we use a minimally adequate teacher. It can answer two types of questions
from the learner. First, there are membership queries where it answers if a given
string t is a member of the unknown set. Second, the learner may ask whether a
presented set S is equal to the initially unknown set U . If they are not, the teacher
responds with a counterexample. If the presented set contained an element which is
not in the real set, then the teacher responds with that element as a counterexample.
Likewise, if the presented set contains an element which should not be there, it is
used as a counterexample [Ang87].

Basic Definitions

The L* algorithm describes how we can efficiently learn the members of the unknown
empty set U . It requires the learner to keep an observation table. In this table
information is stored regarding a set of strings over A. These may or may not be
a member of the unknown set U . The following definitions are applicable to the
table:

• Prefix-closed set: every prefix of every member of the set is also a member
of the set. For example, if 10 is in the set, 1 has to be part of it as well.

• Suffix-closed set: if 10 is in the set, 0 has to be part as well.

• (·) denotes concatenation. If A and B are sets, A · B is every element of A

concatenated with every element of B.

Furthermore, the table consists of three objects [Kre]:

• S: nonempty set of finite prefix-closed strings. Initially {λ}.
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• E: nonempty set of finite suffix-closed strings. Initially {λ}.

• T : finite function that maps u = ((S ∪ S · A) · E) to {0, 1}. It returns 1 if u is
a member of the unknown set, otherwise it returns 0.

This table can be visualized as a two-dimensional array as is shown in Table 2.2
(see page 26). The rows are labeled by elements of (S ∪ S · A) and the columns
are labeled by elements of E. The entry for row s and column e is equal to T (s · e)
[Kre].

There are two properties for observation tables. First, the table is closed if for each
string t in S·A there exists an s in S such that row(t) = row(s). Next, an observation
table is consistent if s1 and s2 are elements of S such that row(s1) = row(s2) and
for all a in the alphabet A holds row(s1 · a) = row(s2 · a).

If a table has both properties we can define an acceptor M(S, E, T ) which consists
of:

• A state set Q = {row(s) : s ∈ S}.

• An initial state qo ∈ Q = row(λ).

• Set of accepting states F ⊆ Q = {row(s) : s ∈ S ∧ T (s) = 1}.

• Transition function δ : δ(row(s), a) = row(s · a).

This acceptor can be defined as a deterministic finite automata (DFA) which is a
model derived from the implementation. A DFA has internal control states and
transitions between these states based on certain inputs from the environment
[Sil13]. A simple example is a coffee machine that accepts only 5 and 10 cent
coins. At this machine coffee costs 25 cents. A possible automaton for this machine
is shown in Figure 2.6. Here, the states denote the amount of credit and the
transitions what coin is inserted in the machine.

In practice, systems do not distinguish accepting and non-accepting states but rather
produce some output when given an input [Raf+05]. This behavior is captured in
Mealy machines and can be described similarly to a DFA:

• A set of states Q.

• An initial state qo ∈ Q.
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Figure 2.6. DFA of example coffee machine [Sil13].

• Σ: finite input alphabet.

• Γ: finite output alphabet.

• Transition function δ : Q × Σ → Q.

• Output function γ : Q × Σ → Γ.

The difference between a Mealy machine and a DFA is that a Mealy machine does
not only move to a new state upon an input symbol, but it also produces an output
symbol.
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Main Loop

Here we see the pseudocode of the L* algorithm. It produces an acceptor M given
an alphabet A.

Data: Alphabet A

Result: Acceptor M

Initialize S and E to {λ} ;
Ask membership queries for λ and each a ∈ A ;
Construct initial observation table (S, E, T ) ;

while (S, E, T) is not closed or not consistent do
if (S, E, T) is not consistent then

find s1, s2 in S, a ∈ A and e ∈ E such that row(s1) = row(s2) and
T (s1 · a · e) ̸= T (s2 · a · e) ;

E ∪ a · e ;
extend T to (S ∪ S · A) · E using membership queries ;

end
if (S, E, T) is not closed then

find s1 ∈ S and a ∈ A such that row(s1 · a) is different from row(s) for
all s ∈ S ;

S ∪ s1 · a ;
extend T by asking membership queries for missing elements ;

end

end
create acceptor M ;
query M for equivalence ;
if teacher responds with yes then

output M ;
else

S ∪ counterexample t and all its prefixes ;
extend T by asking membership queries for missing elements ;
perform mainloop ;

end
Algorithm 1: L* Algorithm [Ang87]

2.2.2 Example

We demonstrate the algorithm by providing an example [Kre]. Given a learner that
wishes to learn the following unknown set:
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U := {w ∈ {a, b}∗| number of a’s is even and number of b’s is even }

Members of U are aabb, ab and λ, whereas aaab is not.

Round 1

We start with initializing both S and E to λ. We build the following observation
table:

T1 λ
S} λ T (λ · λ) = 1

S · A} a T (λ · a) = 0
b T (λ · b) = 0

Table 2.2. Initial observation table.

Every round we must check whether the table is closed and consistent. If that is the
case, we can build the acceptor. Next, we query the teacher for equivalence. If the
created acceptor is equivalent then we have generated the model.

• Closed: for all t ∈ S · A there exists an s ∈ S such that row(t) = row(s).
This is not the case. If we take t = a, T (t) = 0, there is no s ∈ S such that
row(s) = 0.

In order to fix this, we must find s1 ∈ S and a ∈ A such that row(s1 · a) is different
from row(s) for all s ∈ S. This is the case for s1 · a = λ · a = a as T (a) = 0. Now,
we extend S with a and query for membership.

Round 2

After querying for membership, we obtain the following new observation table:

T2 λ

λ 1
a 0

b 0
aa 1
ab 0

• Closed: we can find s ∈ S such that row(s) is equal to row(s·t) where t ∈ S ·A.
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• Consistent: there exists s1, s2 ∈ S such that row(s1) = row(s2) and for all
a ∈ A holds row(s1 · a) = row(s2 · a). This holds if we take s1 = s2 = λ.

Now we compute the acceptor M1 as follows:

• Set of states Q: {row(s)|s ∈ S}. This results in 0, 1.

• Initial state q0 ∈ Q: row(λ) = 1.

• Set of accepting states F : {row(s)|s ∈ S ∧ T (s) = 1}, this results in s =
λ, T (s) = 1.

• Transition function can be expressed in the following table.

δ a b

0 1 0

1 0 0

If we visualize it, we get the following DFA:

q1 q0

a, b

b

a

However, we can see that this model is not correct. We can find the counterexample
bb which has an even number of a’s and b’s but is not accepted. The learner receives
bb, adds it and its prefix b to S.

Round 3

The learner continues with the extended S := {λ, a, b, bb}, queries for membership
and constructs the following observation table:
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T3 λ

λ 1
a 0
b 0
bb 1

aa 1
ab 1
ba 0
bba 0
bbb 0

We can easily see that this table is closed. However, it is not consistent. If we
take s1 = a and s2 = b then the first condition where row(s1) = row(s2) holds.
However, it does not hold that for all a ∈ A row(s1 · a) = row(s2 · a). In particular
row(aa) ̸= row(ba).

We fix the inconsistency by choosing s1, s2 ∈ S, e ∈ E and a ∈ A such that
row(s1) = row(s2) and T (s1 ·a ·e) ̸= T (s2 ·a ·e). This can be achieved by choosing a

and b for s1 and s2 respectively. If we choose a ∈ A we see that the second condition
holds T (a ·a ·λ) ̸= T (b ·a ·λ). We add the value a to E and continue with expanding
the observation table .

Round 4

After expanding E with a, we can query for membership and obtain the following
observation table:

T4 λ a

λ 1 0
a 0 1
b 0 0
bb 1 0

aa 1 0
ab 1 0
ba 0 0
bba 0 1
bbb 0 0
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Figure 2.7. Model of unknown set U .

We can see that this table is closed and consistent. However, if we create a DFA we
can still come up with a counterexample. So we continue the iterations until we
find a closed, consistent observation table that has a correct model. These steps are
not shown here, but the final model of the set of words is shown in Figure 2.7.

Given a DFA it is possible to transform it into a Mealy Machine. This can be achieved
by defining a mapping from inputs and outputs of the machine to the letters in the
alphabet. However, this increases the size of Σ which is bad from a performance
aspect [SG09].

Another option is to tweak L∗ to directly infer a Mealy machine. For this, we need
to change the structure of the observation table. Instead of storing 1 or 0 if a given
string t is member of the set, we store the output of the system when provided
the string and the current state γ(qi, t) [SG09; Nie03]. In Chapter 3 we use this
approach to infer a Mealy machine from the QUIC implementation.
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3Protocol Analysis: Set-Up

In this chapter we describe the analysis we have performed on the server implementation
of Google’s version of QUIC. We started with learning a model from the implementation.
This method is applied since we can test whether the system is conform its specification.
In other words, we can test if it satisfies its requirements. These are usually written
for positive behavior (e.g. successful connecting to the server).

The next method we used is fuzzing. It is used to capture unwanted features
that never made it to the requirements, but were implemented at a later stage
of development. It can also be used to test against negative behavior which was
captured in negative requirements [Tak09]. Additionally, we also use it to test the
robustness of the implementation. Even if the protocol is implemented correctly, if
the implementation is not very robust then it can show unexpected behavior when
it receives wrong input.

We choose to use fuzzing because of three reasons. First, Fuzzers have proven to
be effective in the past by revealing bugs. A good overview can be found in [Zala;
LLV18]. Fuzzers were also able to find previously found bugs much faster than
manual inspection. This was the case with the Heartbleed vulnerability [MS18;
Syn14]. Next, Google uses fuzzing as a testing technique within their software
development lifecycle. We believe that they have fuzzed the QUIC implementation.
However, their exact method and results are not publicly published. This makes it
interesting for us to do it and see whether we can find interesting results. Third, the
differences between February and June 2018 in the source code would not result in
completely different state machines. Therefore, it is more interesting to apply a new
analysis rather than performing the same analysis on a more recent iteration. We
came to this conclusion based on the changelog in the forum for the QUIC protocol
[Ham18].

3.1 State machine inferencing

In state machine inferencing we have the learner that communicates with the teacher.
At the teacher we have the abstraction component that concretizes abstract messages
from the learner or teacher into valid QUIC requests. These messages are then send

30



to the System under Learning. The learner asks queries to learn more about the
initially unknown empty set, until it able to output the Mealy machine from the
QUIC implementation.

If we look at the set-up in more detail, we can see that it consists of four parties,
see Figure 3.1:

• First, we have the System under Learning (SUL). In our case this is the QUIC
server. It has the task to handle requests made by a QUIC client (typically
implemented in browsers). In our set-up the requests are made by the learner
in the form of membership queries or equivalence queries.

• Next, we have the learner. As was mentioned in the previous chapter, we use
the L* algorithm to infer a Mealy Machine from a given implementation. It
does so by making two types of queries to the SUL. The learner is not a QUIC
client. Therefore, it does not know how to make valid requests to the server.
In order to solve this, we have a third party.

• This party is abstraction component. It is located between the learner, the
conformance tool and the SUL. It has the task to receive and transform abstract
queries from the learner and the conformance tool to concrete QUIC requests.
These are then forwarded to the server. The concrete QUIC response from the
server is also abstracted so that the learner and conformance tool understand
it.

• Once the learner has made enough membership queries it can build an hypothesis.
The conformance tool tests whether it is correct. It does so by making random
test queries. If the output of these queries match the hypothesis then it was
correct. Otherwise, a counterexample is returned. The conformance tool can
only make a limited number of tests. Therefore, we are never certain that a
learned model is completely correct [Vaa17].

The abstraction component offers some benefits. It provides an abstract representation
of the SUL to the learner. This ensures that, in our case, the learner does not
consider two REJ messages that only differ in connection IDs and nonces as distinct
responses to the same query. This limits the number of states in the model. If we
would omit this component, learning models would not scale to realistic applications
(e.g. botnets) [Cho+10; Vaa17]. Next, it allows for a simple learner which can be
used for different SULs by using different abstraction components.
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Figure 3.1. State machine inferencing set-up [Vaa17].

The open-source Chrome project, Chromium, provides the QUIC server which we
can use as the System under Learning. This does not need any adaptations since
the abstraction component provides the server with valid QUIC requests. Although,
these requests might be send in an unusual order.

For the abstraction component we decided to create our own version. This is
because we did not manage to adapt the original Chromium client to send QUIC
messages in arbitrary order. This is required, as the learner queries in random order
and based on this, the component should create valid requests. In the next section
we describe how we implemented this component.

For the learner we have two options. We can interact directly with the L* algorithm.
This can be done by using LearnLib [Lea18], which is a Java library that implements
the L* algorithm. In that case, we must connect to the abstraction component
manually and set up the learning algorithm, set up the conformance tool. There
are good examples available on [Lea18] to achieve this. Another option is to
use StateLearner [Rui18] which is a wrapper for LearnLib developed by Joeri de
Ruiter. It allows to create a learner quickly by merely setting some parameters in a
configuration file. We chose for the last approach due to its simplicity and speed.

In the next few sections we describe some encountered obstacles and how they
were dealt with.
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3.1.1 Implementing the abstraction component

As was mentioned in the last chapter, Google’s version of the QUIC protocol lacks
some documentation. Therefore, creating the abstraction component was a challenge
since it needs to be able to craft valid QUIC requests and parse responses from
the server. This was even harder, since most QUIC messages (except connection
establishment) are encrypted. Therefore, network analyzing tools such as Wireshark1

are not very useful.

We started with trying to adapt the existing client into an abstraction component.
It was hard to find our way in the code. We used a static code explorer called
SourceTrail2 but this did not help. Ironically, this was created by an intern
working at Google who also had trouble with the large code base of the Chromium
project [Gra16]. We decided not to continue exploring the client.

Another attempt was to use code of another client. However, due to the lack of
documentation there are few other clients that implement the latest version of
Google’s QUIC [Lar18]. Eventually, we found a ported version of the original client
in GoLang [Cle18]. It is developed by Lucas Clemente, who is a software engineer
at Google in Zürich. This implementation allowed us to easily add breakpoints and
follow the execution of a request with its data.

This helped in understanding the protocol messages and allowed us to manually
create the abstraction component. For this, we used a Python library called Scapy. It
is able to send, sniff and forge network packets [Bio18b]. It has been used in similar
studies in the past with success [Ver16; FB18]. Using this library, the available
documentation and thoroughly reverse engineering both QUIC clients, we managed
to build the abstraction component.

We were able to set up a connection rather easily. However, key establishment and
encryption formed a bottleneck. This is because of the two different key generation
steps. Depending on whether the client already received a SHLO message, the key
generation differs. Additionally, there is the unknown fixed nonce (as discussed in
the previous chapter).

Another reason that made cryptography hard in the abstraction component, was
the use of AES-GCM with a 12 byte tag. In general, the tag is 16 bytes long.
These shorter tags are not supported by cryptographic libraries for Python (such

1See https://www.wireshark.org/
2See https://www.sourcetrail.com
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as Cryptography3). Even though it is allowed to use these shorter tags, the security
strongly dependents on the tag size [Dwo07]. We believe that the shorter tag was
chosen due to performance reasons. In order to perform cryptographic operations
with QUIC, we had to use the implementation of Lucas Clemente via sockets [Cle18].
This introduced some latency, however this approach is easier than manipulating
existing AES implementations.

Our client is not very advanced. It is able to send messages in arbitrary order
but does not implement all the different frame types. We decided to limit to the
following messages (i.e. learning alphabet). Our client is also able to acknowledge
received packets. Although, the documentation was not clear on these frames we
tried to create these frames using the other client from Lucas Clemente.

3See https://cryptography.io/en/latest/hazmat/primitives/aead/cryptography.hazmat.
primitives.ciphers.aead.AESGCM.encrypt
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Learning symbol Concrete QUIC Request Explanation

INIT-CHLO Initial CHLO request Starts a fresh new connection
and is used when connecting
to a previously unknown
server.

FULL-CHLO Complete CHLO Request Uses the data from the
initial CHLO with the missing
tags received in a rejection
message. This does not create
a new connection ID unlike
the INIT-CHLO message.
Instead, it uses the previous
connection ID. If there is no
such value, then it defaults to
-1.

0RTT-CHLO Complete CHLO request Starts a fresh connection but
uses the stored tags which
were missing from a previous
initial CHLO.

GET HTTP/2 GET Request GET
(Stream Frame)

Makes an HTTP/2 GET request
for the fixed domain www.
example.org

CLOSE Connection Close Frame Notifies that the connection
is being closed. If there
are streams in flight, those
streams are all implicitly
closed when the connection
is closed.

The source code of our abstraction component is available on GitHub, see https:
//github.com/aredev/quic-scapy.

3.1.2 Dealing with non-determinism

One important requirement when learning a model is determinism. We want to
observe the same output when sending the same input. Otherwise, learning a model
will never terminate as it encounters new transitions every time for the same input.
For example, when sending the same sequence A B C we always want to observe
the same response 1 2 3.
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When running the learner for the first few times, we encountered some non-determinism.
We can distinguish two types of non-determinism. First, we have it at query level.
This means that sending the same sequence of symbols from the input alphabet
(in our case, these symbols represent QUIC requests) results in different responses
some time. For example, when sending the sequence A B C it may occur that there
is a hiccup (e.g. client misses a response) which results in a different response than
other times.

In our case we had a second type, which is at symbol level. This means sending
a single symbol B does not yield the same response every time or we are not sure
what the response to symbol B is.

The non-determinism is caused by two reasons. First, there is some response
uncertainty. If the abstraction component makes a request to the server, it does
not know whether the next received response is for the newly created request or
if it is an acknowledgement, retransmission of a previous message, or something
else. Initially, we considered the first received response after sending a request as
the response to that request. However, this might not always be the case, as we
see later. Second, we are not certain if a server responds at all. This can occur if it
received an incorrect message.

We noticed that some packets are retransmitted frequently. The reason for this is
twofold. On the one hand, our abstraction component is not as efficient as the
original client. We compared the time it takes our implementation with the GoLang
version to set up a connection, make an HTTP request and close it. If we take
the median4 from 10 rounds, our implementation is able to do so in 1, 94 seconds,
compared to 0, 22 in GoLang’s version. On the other hand, the QUIC server just
retransmits fast [SI15]. It does so to increase performance.

Our client is not as efficient as the original client because of three reasons. First,
a compiled programming language like C++ or GoLang is faster than a scripted
language like Python which we use. Second, for encrypting and decrypting values
we use a separate process. In order to communicate with it, we use sockets which
introduce some latency. Third, our client in general is not created with efficiency in
mind. The goal was to be able to just create valid QUIC requests and send them to
the server and parse the responses received. Given the lack of documentation, this
was a challenge on itself. This caused the created client to be rather simple.

Dealing with the response uncertainty is tricky, since there is no link between the
request and a response. This means we can never link a response to a request with

4We take the median to ensure that outliers do not affect our results which is the case when taking
the average.
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complete certainty. In general, we can assume this based on the order in which
messages are sent. We could send a request A B C, three times like A B C RST
A B C RST A B C. After every iteration the system is reset to its initial state, here
shown with RST. If the response would be 1 2 3 1 2 3 1 2 3, we use the majority
response to find the probable response to a request. This approach has been used
in [FB18; Ver16].

However, we can not use this approach. This is because QUIC uses streams which
means that packets might not be delivered sequentially when one of the packets
is lost. The problem with sequential delivery is head-of-line blocking (see Section
2.1.1) which was specifically addressed in QUIC [Lan+17; Ham17]. We cannot
repeat the requests as mentioned earlier since we have no guarantee that the
responses of the server are received in the order in which we sent the requests.
Another reason why this would not work is because the StateLearner tool we
used, sends queries one-by-one. We do not know the complete query on forehand,
such that we could repeat it three times. However, it is possible to adapt the tool,
such that it does send the complete query.

If we were able to use the original, advanced QUIC client developed by Google,
we could have used this sequential approach. This is because this client is able to
parse and reorder the messages, such that it appears like it has been received in that
order. Unfortunately, we were not able to use the original client as the abstraction
component and our implemented client is basic. Therefore we had to come up with
a different solution to deal with the response uncertainty.

One solution for the response uncertainty is to assume a fixed response to a certain
request. If the received response does not match the predefined fixed one, it is
an invalid answer. This makes the system deterministic but model learning is only
effective for normal runs. Responses of unexpected runs are not parsed correctly,
as it would only show that the response is invalid but does not provide more
information.

Instead, we chose a different approach to gain more confidence in the response. As
was mentioned earlier, we are not certain if an observed response is the response
to the previous request or if it is something else. In order to increase the level of
certainty we repeat a single message three times. By doing this, we can be more
certain that a response we observe more often after a certain request is indeed the
response to that request. For example, when sending the query A B C, we would
send A A A B B B C C C. If we observe the response 1 1 1 2 2 X 3 3 3, then
we are more certain that the response to message A is 1, 2 to message B and 3
to message C. Despite the one incorrect response which was received when sending
message B, we can still consider 2 as its response because of the other two messages
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received. We increase the certainty of a response to a single request. If we apply
this repetition to all requests, then we also have certainty of the response to the
entire query.

However, this solution is not completely waterproof. It is not possible for every
message to be send three times back to back and receive the same response every
time. For example, it is not possible to close the same connection three times.
Therefore, we had to exclude those requests which we can not make three times
without changing the state of the system (e.g. 0-RTT CHLO and Close) and perform
some manual filtering for the responses. This is explained in more detail in the next
chapter.

Dealing with the issue where the server would not respond at all is easier to address,
since we can run a large number (e.g. 10000) of requests and compute the median
response time. If during model learning the server does not respond within this
time (plus-minus some delta value), we can assume the server will not respond.
In our case, we chose to multiply the median value times three. We chose to
triple the ‘expiration timeout’ because of overhead (sockets, sleep periods, database
read/writes). By experimenting with the scalar, we found that a multiplication of
three was enough. A shorter timeout time would result in more messages being
considered as expired.

3.2 Fuzzing

The other type of analysis we performed was fuzzing. It is a software testing
method used for robustness. It feeds malformed and unexpected data in systems
[Tak09]. Examples include integer overflow, underflow, repetition of elements and
unexpected elements. Fuzzing is a relatively new in software development, but
some software engineers used a similar technique already in the 1980s. They
used a tool called The Monkey which would behave like an angry monkey, banging
on the mouse and keyboard generating random inputs and drag events [Tak+08;
Wik17].

Basically, there are only two parties when fuzzing. There is the system which we
want to fuzz and the fuzzer. The fuzzer generates input which is fed into the system.
If we look in more detail we can observe the following parties involved [Tak+08]:

• Fuzzer: Library that crafts unexpected inputs and sends it to the System
under Test. Some advanced fuzzers are able to perform some analysis on the
response. There are a few types of responses that may stem from a fuzz test.
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First, there is a valid response. Next, we have an error response (which can be
considered a valid response from a protocol perspective). Third, anomalous
response (unexpected but nonfatal reaction). An example is a slowdown or
responding with a corrupted message. Last, there is a crash or other failure.
Fuzzers can use these responses to tweak the input to make it more ‘effective’.

• System under Test: Software that the malformed input is fed to. It is also
monitored for unexpected behavior caused by this input.

We can categorize fuzzers in the following categories [Tak+08]:

• Static and random template-based fuzzer: These fuzzers have little protocol
awareness and have no dynamic functionality. Typically used for simple request-
response protocols or file formats.

• Block-based fuzzer: These fuzzers can perform little dynamic functionality
such as checksum calculation and length values.

• Dynamic generation / evolution-based fuzzer: These fuzzers do not necessarily
understand the protocol but use a feedback loop from the target system to
learn how to mutate their inputs. This feedback loop would show that the
input has triggered some new paths in the code which previously have not
been provoked.

• Model-based / simulation-based fuzzer: These fuzzers have a model or
simulation of the system under test. Not only message structures are fuzzed,
but also unexpected messages in sequences can be generated.

The goal of fuzzing is to find security-related defects or any other flaws that result
in a denial or degradation of service or any other undesirable behavior.

Fuzzers that start with random input and mutate that, are inefficient (e.g. template-
based fuzzers). They are only capable of finding naive programming errors. Therefore,
it was required to make more intelligent fuzzers (e.g. evolution-based fuzzers) to
find bugs that are ‘buried’ deep within the system under test [Tak+08]. For our
research we used a random template-based fuzzer and a evolution-based fuzzer.
We describe the reasons for these choices in the next sections.

Many software development companies (e.g. Microsoft [God+08] and Google
[Rom18]) incorporate fuzzing in their software development lifecycle. This is because
it is important to not only focus on the positive requirements but also explore the
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challenges that may occur in the negative requirements [Tak09]. By performing
such test early in development, the costs of fixing bugs are not as high as when it
would be encountered at a production setting.

Fuzzing networking protocols is important for two reasons. First, robust implementations
of networking protocols are important as these form the communication infrastructure
of the modern time. Therefore, there is a growing burden on the reliability of these
implementations. In addition, crafting packets and randomizing them manually is
not very practical [Zha+14]. A fuzzer is very helpful during this process.

3.2.1 Naive fuzzing

We started with using the built-in fuzzer in Scapy. Since we invested effort and
time into building the abstraction component from scratch (see Section 3.1.1), it
was trivial to incorporate the fuzzer. We called the fuzz() method on our QUIC
packets.

This method can be seen as a random template-based fuzzer. Given the structure of
a packet with its fields, it replaces any fixed value with a random one [Bio18a]. It
does not adapt fields that are computed (e.g. checksums or length fields).

The results are described in the next chapter.

3.2.2 Advanced fuzzing

We continue with dynamic generation or evolution-based fuzzers.

In contrast to the fuzz function, this type of fuzzer is more advanced. It uses a
feedback system such that it can mutate the input according to the behavior of the
system. This feedback system is injected while compiling the program and is able
to capture branch coverages. This enables it to trigger new interesting execution
paths.

We discuss two different type of evolution-based fuzzers. Both take roughly the
following steps:

1. Load an initial set of provided test cases (input data) into a queue.

2. Take next input from the queue.
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3. Trim the test case to its smallest form such that it doesn’t change the observed
behavior of the system.

4. Mutate the input using some fuzzing strategies (e.g. bit flips, incrementing or
decrementing integer values or replacing hardcoded integers with interesting
values such as MAX_INT or -1 [Zal14]).

5. If any of them result in a new state transition, as observed by the feedback
system, add it as a new entry in the queue.

6. Go to step 2.

American Fuzzy Lop (Afl)

American Fuzzy Lop is a brute force fuzzer that uses a compile-time feedback system
and genetic algorithms to find interesting inputs that trigger new internal states in a
specified binary. It has found a number of bugs across a large range of applications
[Zala; Zalb].

We are able to apply this method, since we have access to the source code. Therefore,
we can ‘inject’ the feedback system into the source. This feedback system has only
a minor impact on the performance [Zalb].

We now mention some promising, but unfortunately failed attempts.

Incorporating the instrumentation is done by compiling the code using a special
supplied compiler from Afl. In our case compilation would succeed. However, when
running the fuzzer after compiling, it would stop directly and mention that the
instrumentation was not present in the targeted binary.

To fix it, we used the compile argument use_afl=true, which is present in the
Chromium build system. However, this did not fix it since it failed on compiling the
Afl source code. We then decided to compile the Afl source code separately from the
QUIC server. Compilation succeeded but the instrumentation was still not added to
the binary according to the fuzzer.

After inspecting the build script, we noticed that this option would only include the
Afl source code as a source code dependency for compilation. It would not add
any instrumentation to the binary. We were already able to compile the Afl fuzzer
manually, so this command was not valuable for us.
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It is also possible to use the fuzzer in non-instrumented mode. This mode disables
the feedback system, making the fuzzer not very intelligent. After running the
fuzzer in this mode, we noticed that it was not able to detect any crashes occurring
in the targeted binary. We tested this by raising a segmentation fault. We believe
that this is independent of running the fuzzer in non-instrumented mode, as this
would only help the fuzzer in mutating the input.

A solution is to remove any signal handlers. However, this is not a trivial task. This
obstacle was also observed in a similar study with fuzzing StrongSwan [San18].

We decided not to continue with Afl and try to use a different evolution based
fuzzer.

LibFuzzer

Another fuzzing method which was mentioned on the Chromium repository was
LibFuzzer. It was suggested to use for local development, since it does not require
any special configuration and gives meaningful output faster than Afl.

Compared with Afl, there are some differences. First, LibFuzzer only works on
functions instead of complete binaries. Next, it requires one to write some code
that actually calls the function to be fuzzed [Rom18]. These are also reasons why
we started with Afl in the first place.

LibFuzzer is an engine for in-process, coverage-guided, white-box fuzzing [MS16]:

• In-process: It does not launch a new process for every test case, but rather
mutates inputs directly in memory. This differs from Afl that terminates a
process after every test. This impacts the performance significantly, since
performing certain required system calls are slow [Zal15]. It is also possible
to run Afl in a persistant mode which enabled in-process fuzzing but this is an
optional feature.

• Coverage-guided: It measures the code coverage for every input and accumulates
test cases that increase the coverage.

• White-box: It uses compile-time instrumentation of the source code.

Writing this function has the benefit that we have more control over the fuzzing
process. This enabled us to fuzz a single function. This makes it more efficient and
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reliable since we do not need to launch the whole server, which can add overhead
and might introduce unexpected behavior. The downside is that we need to know
what function we want to fuzz from the source code, this requires some knowledge
of the implementation.

We write a fuzz test by implementing a special function. This function receives a
data buffer and its length. This is fed into the code we want to test. This is shown
in Listing 3.1.

In our case, we want to fuzz the parsing functionality of the QUIC server. It is
interesting if we can find a flaw here and trick the server such that a malformed
packet is considered to be a valid one and tries to parse it. If there is no proper
input validation, it can crash or behave unexpected when trying to parse a packet
it does not recognize.

In order to implement this function, we must instantiate the QuicSimpleServer
class. In the original code, it listens on a socket to incoming connections. However,
we cannot use this since we do not use sockets. Therefore, we added a function to
the QuicSimpleServer that receives the data as a function parameter. This method
then calls the internal ProcessPacket() method.

Listing 3.1 LibFuzzer fuzzing code.

#include <stdde f . h>
#include <s t d i n t . h>

extern "C" in t LLVMFuzzerTestOneInput ( const u in t8_ t * data ,
s i z e _ t s i z e ) {

CallAPIToFuzz ( data , s i z e ) ;
return 0;

}

The complete code which was used to fuzz the parser is shown in Appendix A.

LibFuzzer has been used at Google and has found numerous bugs [MS16]. At
the time of writing there are 3281 bugs in Chromium that have been found using
LibFuzzer. They vary between buffer overflows, usage of uninitialized values and
integer overflows. Additionally, it has found bugs in non-Chromium products such
as Python, SQLite and Wireshark. LibFuzzer has also been been integrated in
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Chrome’s Fuzzer Program5. It is a program where Google rewards individuals who
responsibly disclose vulnerabilities to the Chrome project.

We ran LibFuzzer twice. The first time we do not provide a corpus of sample
inputs. Rather, it starts with random input and continues mutating until it finds
some unexpected behavior in the function. The second time, we provided a corpus.
This was created by exporting 1000 valid and invalid CHLO payloads into a directory.
These payloads are generated using our abstraction component from our state
machine inferencing analysis (see 3.1.1). The fuzzer can now generate mutations
based on the corpus, this makes it more efficient since it is aware of the structure
of the input [LLV18].

The results are described in the next chapter.

5See https://www.google.com/about/appsecurity/chrome-rewards/
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4Protocol Analysis: Results

In this chapter we describe the results from our analysis with respect to fuzzing and
state machine inferencing, as described in the previous chapter. For all experiments
we used the the source code from the Chromium repository with commit tag e611939ed2.
This version stems from early February 2018 and it implements QUIC version 39.
This is still used in Chrome’s latest stable version 67.0.3396.99, released on June
22nd 2018. The next version of Chrome will use version 43 of QUIC.

4.1 State machine inferencing

We start with describing the results from model learning. We have created two
models. We started with modeling the simpler case where the learner does not
know about the 0-RTT message. This is simpler because the abstraction component
does not need to store the received REJ tags. We continued with learning a model
where the learner could also start a connection using a previously received REJ
message.

In both tests we use the same default configuration provided by StateLearner. It
uses L* as learning algorithm and uses random queries as equivalence test. The
minimum input length is specified at 5 and the maximum is 10. The number of test
queries which the teacher should make is set to 100. We use the value 42758 as
seed, it was chosen arbitrarily.

4.1.1 Without 0-RTT

This model was created in 42 minutes. It required 104 membership queries. The
reason for this slow execution is due to some ‘sleep’ periods of 8 seconds after every
reset and 2 seconds between every retransmission that were added to the code. We
have added this to ensure that messages in transit are delivered. This lowers the
number of wrongly received responses to requests as was mentioned in the previous
chapter. These values were chosen arbitrarily and could probably be lower.

The result is a rather simple model with just five states. It is shown in Figure 4.1
and in Appendix B.
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We hope to see a path in the model. For example, it should not be possible to receive
an HTTP response without setting up the connection by means of an initial CHLO and
optionally a full CHLO. This means that the correct path should start with sending a
CHLO. This should result in a REJ since the client does not know enough information
about the server to send a complete CHLO. With the REJ message, it can send a full
CHLO which has enough information. This results in a SHLO message which contains
the ephemeral public value of the server. At this point, the connection is successfully
established. The client is now able to make GET requests. Since that is an operation
which should not change the internal state of the system, it should be possible to
make them multiple times and receive the same response each time.

Since we do not have a complete and detailed specification for Google’s version
of QUIC, we cannot compare the learned model with it. Therefore, we look at
transitions we find interesting and need some explanation. All of the expected
transitions are present, but we see one interesting transition which stands out.

After the client makes a successful GET request and receives the HTTP response, it
is unable to make another GET request on the same stream immediately afterwards.
Manual inspection showed that the server responds the second and third time with
just an acknowledgment instead of the HTTP response.

This behavior was not mentioned in the documentation. Therefore, we tried to find
the cause. First, it could be that requesting the same origin on the same stream ID
causes the server not to respond. However, it is not possible to change the stream on
which the request is made. QUIC uses stream 3 for transmitting compressed headers
for all other streams. This helps in processing of the headers [Cyr+16]. Our second
guess was to change the domain and test whether we could make two consecutive
GET requests to different domains. However, this requires to send a new CHLO
message because the Server Name Indication (SNI) tag needs to be altered to the
new domain. Even though we could not verify this, we believe that this behavior is
a result of some client side caching that is expected by the server.

We also observe one previously undiscussed result at some responses, namely EXP.
It stands for Expired and it is used for when the server did not respond within our
expected time limit (see Section 3.1.2).

Another interesting response is with the full CHLO. When sending this message
before an initial CHLO, we get an EXP response. However, we would expect it
to behave similar to an initial CHLO message and trigger a REJ response. In our
implementation of the abstraction component, there is a difference between the
initial and full CHLO. In the initial message some tags are not send, they are omitted
from the packet payload. The full variant has all required tags and their values
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INIT-CHLO / REJ
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FULL-CHLO / PRST

CLOSE / closed
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GET / http

FULL-CHLO / EXP

CLOSE / closed

Figure 4.1. Learned model of Google’s QUIC Server, without 0-RTT.

are initially empty or have some wrong default value. The abstraction component
uses the received REJ message to substitute these values with correct ones. As long
as it does not receive a REJ message before sending a full CHLO, it continues to
send empty/default values with the tags. The QUIC server does not accept these
incorrect values and therefore does not respond to these messages which causes
them to expire.

There is also a transition where it looks like we can keep closing a connection.
Although, it is not possible to close an already closed connection, what it actually
means is that a closed connection remains closed when sending a close message.
This is a result from our retransmission to ensure consistency while learning the
model (see Section 3.1.2). We perform some response parsing/filtering when closing
a connection in the abstraction component. This is done to make the model readable,
but it requires some explanation. The first time when closing a connection, we just
get an acknowledgment. The second and third time we do not get a response, but
the messages expire. Instead of responding with EXP to the learner, the abstraction
component parses this and transforms it to CLOSED.

4.1.2 With 0-RTT

To learn this model we added one extra symbol (i.e. 0RTT-CHLO) to the input
alphabet. This increased the time it took to create this model. The 7 states were
created in 73 minutes. It required 225 membership queries and again 100 equivalence
queries as this was specified. The model is shown in Figure 4.2 and in Appendix
C.
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Figure 4.2. Learned model of Google’s QUIC Server, with 0-RTT.

We expect to see a model that matches our previous assumption. Additionally,
there should be a transition after a successful connection establishment (i.e. after
receiving a SHLO) that can immediately set up a connection by sending the 0-RTT
CHLO. In this case, the client should not receive a REJ message but rather a SHLO.
In practice, if the user wishes to achieve the least number of round trip times, it
should make a GET request after sending the full CHLO without waiting for the SHLO
response. We are not able to model this parallel behavior using our approach.

We can observe the 0-RTT transition. Initially, the client sets up a connection using
an initial CHLO message (transition state 0 to 1). Next, it uses the received tags in
the REJ message to craft a complete CHLO message which results in a SHLO response
(transition state 1 to 4). It is now possible for the client to make a direct request
that results directly in a SHLO message (transition state 4 to 4 or state 2 to 4).

While learning this model we encountered some additional non-determinism. A
0RTT-CHLO message changes in behavior over the course of three consecutive requests.
The first time it triggers a REJ response, the second time it uses that received
message to craft a complete CHLO message which results in a SHLO message. The
third time it also results in a SHLO, because of the new connection ID it chooses. If
we use the approach of the majority response, a 0RTT-CHLO message always returns
a SHLO, which is not correct.

This problem originated from our implemented abstraction component, since we
chose to add received REJ tags directly in the 0RTT-CHLO if they are present. Implementing
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the 0RTT-CHLO in this way was easier. We also believe that it is also the correct
functionality of the message.

We could not send the 0RTT-CHLO three times back to back, so we have to find a
different approach to have response certainty. We perform some manual inspection
or apply some response filtering. For example, it is not possible to receive an HTTP
response to a initial CHLO message. This could either happen in the implementation
of the abstraction component or in the resulted state machine. For example, sometimes
a strange response was received on a 0RTT-CHLO as a result of a previous retransmission.
This response would then be discarded and a correct one was returned to the
learner.

The smaller model (see Section 4.1.2) helped us understand the basic run of the
protocol. We used this model to decide what responses to consider incorrect and
what could actually be considered a valid response in the bigger model. This gives
a degree of confidence that our manual correction did not invalidate the learned
model.

There was another implementation detail which affected our learned state machine.
As was mentioned in the set up chapter, we chose to use the INIT-CHLO and 0RTT-CHLO
messages to set up a fresh connection (i.e. use a new connection ID). This allowed
the transition from state 2 to 1 to be legal. However, if we would have used the
previous connection ID, this would have resulted in an expired message. The same
behavior is also present in the model without 0RTT-CHLO messages.

This is because QUIC accepts packets in a latching fashion. Once an encrypted
packet is received, it does no longer accept unencrypted packets [LC16]. But since
we use a new connection ID for this, it can start with an unencrypted message.

4.2 Fuzzing

In this section we continue with the results from the fuzzing part of the analysis.
We conducted two types of fuzzing. We start with the simple fuzzer supplied by
Scapy and continue with the results when running LibFuzzer.

4.2.1 Naive fuzzing

Since this type of fuzzing is incorporated in Scapy, we can learn a model using
the set up mentioned in the previous chapter. This model was generated in 24
minutes and does only contain transitions that have been expired. This means that
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the server did not respond to any of the fuzzed messages. This is not an exciting
model, therefore it has not been included.

We can explain this because of our naive method of fuzzing. It simply randomizes
all fields that are not computed. Examples of computed fields are checksums and
lengths. This means that the TAG field, which indicates whether the payload is, for
example, a CHLO, is also randomized.

When the server receives this kind of input, it cannot match the TAG to any type
it is aware of. Therefore, the server is unable to process the request and does
not respond to any of the messages. This causes the timer to expire and mark all
responses as expired.

This method of fuzzing did not result in crashes or any other unexpected behavior.

4.2.2 Advanced Fuzzing

Since the basic type of fuzzing did not find any weaknesses in the ProcessPacket
function, we tried a more advanced fuzzer namely LibFuzzer. We fuzzed the server
three different times.

First, we fuzzed without supplying a corpus. This means that the fuzzer started
with random inputs and mutated it until it observed new states in the execution. As
was mentioned in the previous chapter, this method of fuzzing is not very efficient
as it can take a lot of time before it is aware of the complex packet structure.

We terminated the fuzzer after it had generated 223 different inputs. At that time it
had covered 4536 code blocks. This is a straight-line sequence of code with only a
single entry point and a single exit point [GCC]. Additionally, it used 4188 different
signals to evaluate the code coverage. The fuzzer executed at 295 iterations per
second and used 224 Mb of RAM.

This method did not find any weaknesses in the targeted function either. However,
there were two inputs that caused the ProcessPacket function to take a long
time to finish. These inputs were acl with 28 seconds, q5 with 2029 seconds of
execution.

Afterwards we were not able to reproduce the behavior of slow responses to certain
inputs. We executed the fuzzer on our private laptop and believe that hibernating
and resuming it caused this effect. We can also support this, because the second
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Method Inputs Coverage Features Speed Memory (Mb)
No corpus 8388608 4536 4188 295 224
Corpus 8388608 4544 4188 252 231
Corpus, no reduction 8388608 4544 4188 268 230

Table 4.1. Summary of fuzzing tests

fuzzing attempt was performed over night. During that time, the laptop remained
running and we did not receive any inputs that caused a slow execution.

We continued with providing a corpus with 2000 entries to the fuzzer. After 223

different inputs we terminated the process. At that time it had covered 4544 code
blocks. It has used 4188 different signals. Executed at 252 iterations per second
and used 231 Mb of RAM.

This time the fuzzer did not find any issues in the ProcessPacket function.

We can observe from the logs and the algorithm description that the fuzzer tries to
reduce the input that triggers a certain state. We tried to fuzz the server without this
reduction phase. This is possible by running LibFuzzer with the reduce_inputs=0
option. We applied this, because we are not necessarily interested in the shortest
input but rather in any input that can trigger unexpected behavior at the system
under test. By disabling the reduction phase, the fuzzer can generate more different
inputs. One of these inputs might trigger some unexpected behavior.

However, the results are almost similar to the one with the reduction enabled. The
only difference is the higher number of executions per second compared when the
reduction phase was enabled. This can be explained since the fuzzer only needs
to create new inputs and send it to the fuzzing target instead of performing the
reduction step between the input mutation.

The results of all three fuzzing attempts are shown in the Table 4.1.
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5Conclusion

In this chapter we summarize the key concepts of this thesis. We put the thesis in a
broader context. In addition, we discuss our approach and mention some ideas for
future work.

5.1 Summary

QUIC is a fairly new transport layer protocol developed by Google. It was introduced
for several reasons. First, it improves performance by reducing the number of round
trips needed to set up a connection between two application endpoints. QUIC is able
to establish a connection with an unknown origin with 1 RTT. If the client previously
has connected to the same origin this can be reduced to 0 RTT. In TCP this is 1 RTT,
regardless of any previous connections. Another reason to introduce QUIC was the
need for establishing secure (authenticated and encrypted) connections faster. To
achieve this in TCP, we need to use TLS which adds another 2 RTT. With QUIC,
connections are secured by default and does not increase the RTT. The third reason
for introducing QUIC is the need for deploying changes rapidly in network protocols.
The internet continues to evolve, but updates in TCP or UDP requires updating the
kernel in Operating Systems, which is not very flexible. Therefore, QUIC is built
in user-space on top of UDP. This makes it easier to deploy changes which enables
QUIC to better keep up with the developments of modern internet.

There are currently two versions of the protocol. First, there is Google’s version.
It has been used in production by Google for several years. The source code is
available as part of the Chromium project. However, the documentation is not up-
to-date with the implementation. The next version is the draft from IETF. IETF
is standardizing QUIC so that it can be used by other parties and may replace
TCP in the long run. The drafts are updated very frequently. This causes the
implementations to fall behind on the draft specifications.

We chose to use Google’s version since it is used in a production setting, which
makes it more interesting to conduct research on. Similarly, IETF’s latest draft
version is not implemented and is not used in practice.
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During the implementation of a specification it is possible that some errors are made.
This can be caused because the specification was unambiguous or it did not cover
all edge cases. This can result in different implementations that are incompatible.
Another effect is that it can produce errors on some unexpected input.

Therefore, it is important that implementations are thoroughly tested. We performed
two different analyses of the protocol implementation. First, we performed state
machine inferencing. It allows to test whether an implementation matches the
positive requirements as specified in the documentation. We do so by learning a
model of the implementation. Next, we performed some robustness testing against
unexpected or malformed input in the form of fuzzing. This type of testing is used
for negative or unhandled requirements.

We could not fully compare the inferred state machines with its specification due
to the lack of detail. We found one transition in the state machine which was
not explicitly mentioned in the specification. With respect to fuzzing, we did not
find any inputs that caused a crash or any other disruption of service in the server
implementation.

5.2 Discussion

In this section we discuss our why we did not find any weaknesses in the input
validation and other deviations in the learned model. We start with fuzzing and
finish with state machine inferencing.

As mentioned, the implementation of QUIC was part of the Chromium project. It
aims to build a safer, faster and more stable method of using the web. This project
is maintained by Google, which at its core is a software engineering company. They
spent a lot of time and effort into finding new ways of creating secure software
and testing whether software already built is secure. They have published many
articles1 regarding security in software development. Therefore, we can say that it
is a company that has security in mind when developing software. In general, this
makes it harder to find weaknesses in their applications.

Google integrates published findings in their daily operations. For example, they
have implemented fuzzing as a new type of unit testing since traditional testing is
not enough. It enables them to write more code. This code needs to be written
faster, but it still needs to be correct, stable and secure. This can be achieved by

1See https://security.googleblog.com.
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using fuzzing, it also helps to keep the development costs under control, since more
bugs can be found earlier in the development process [Vyu17].

Despite their efforts, it does not mean that Google’s products are without bugs.
They use strategies such as fuzzing to find flaws. For example, in their Machine
Learning framework TensorFlow they have found many bugs using LibFuzzer.

One reason we did not find weaknesses in the input validation is that previous
versions of QUIC has already been successfully researched. Especially, if we consider
that it only exists for a few years. In 2015 it was found that connection establishment
could be failed with simple bit flipping some parameters and sending certain packets
multiple times during the handshake [Lyc+15]. This was addressed afterwards by
Google. Now that they perform fuzzing during their software development cycle, it
is becoming harder to find such flaws as an external party.

Not only academic researchers or software developers at Google, but anyone can
fuzz Google’s open-source projects. They offer the tools, computation power and
reward people for responsibly disclosing found vulnerabilities. This resulted in 3292
bugs in Chromium found using only LibFuzzer. This way Google’s projects are tested
multiple times by different parties. This does not guarantee that the software is
completely without bugs, but it gives more assurance. Google also offers their
computation power so that it can be used by others to fuzz their own projects.

Regarding state machine inferencing, we believe that Google internally has more
documentation regarding QUIC and also has a state machine. However, with the
upcoming standardization by IETF they probably do not want to publish documentation
which will be outdated within few months anyway. In addition, they can use QUIC
in their production setting as a sort of laboratory in which they can test new features.
Some of them can then be used in the standardized version of QUIC. Documenting
every test feature and afterwards removing it, is a cumbersome process.

We can conclude that the official server has implemented proper input validation.
We were not able to find any weaknesses when fuzzing it using multiple approaches.
This is because they incorporate fuzzing in their software development lifecycle.
Additionally, some weaknesses with respect to input validation were already found
and fixed. With respect to model learning, we found that it is hard to deal with
non-determinism in this complex networking protocol. In the case of QUIC, speed
and encryption are important and deeply integrated within the protocol. It is not
possible to disable these two features as this would leave us with a slightly polished
version of UDP. This would make model learning easier, as we do not need to
worry on retransmissions and computing correct cryptographic keys. Therefore,
we suggest to use the original client when inferring models of advanced protocols
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such as QUIC. In our study we invested time and effort into building our client. In
the end, we noticed that our client was not as efficient and advanced as the original
client. Therefore, it suffered from retransmissions and response uncertainty which
we had to handle by implementing certain tricks. Another lesson we learned is that
we should have analysed the QUIC client by Lucas Clemente instead of reading the
documentation. The documentation is incomplete and not very specific on certain
aspects (e.g. acknowledgements). The client implementation was more helpful,
since we could see it running with data and see what computations it made.

5.3 Future work

In this section we describe some ideas for future work.

One idea is to perform the same analysis on a more recent implementation of QUIC.
However, the changelog showed very minor adaptations between the version in
February which we have used and the current iteration. So we do not expect a
difference between our learned model and the one from a more recent iteration.

Another idea is to handle non-determinism in a different way. Our implemented
client was basic, not very efficient and suffered from retransmissions. Therefore, we
implemented some tricks and performed manual inspection to handle non-determinism.
For a next step, it would be better to spend more time on analysing an existing
client and adapting it, such that it can be used as a learner. It is also possible a
more advanced custom client.

In this thesis we looked at Google’s QUIC implementation but with the standardization
of QUIC in progress, it is interesting to infer a state machine from an implementation
of the standardized version of QUIC as well. It can show some internal differences
between the two versions. From the draft specification we know that there are some
naming differences as well as changes in the header layout.

Other than comparing differences, we can infer a state machine to match against
requirements. We assume that the standardized specification will be more thorough
and therefore is more suitable for checking whether it matches certain requirements.
It is also possible to add model checking to this process. This allows us to check
certain properties of the learned model.

Another step is to look at the client side of the protocol. We can infer the state
machine from the client implementation and fuzz the client.
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Other vendors will also make implementations of QUIC when the standardized
specification is released. It is interesting to learn models from those different
implementations and check whether there are differences between distinct vendors.
If that is the case, this can be used to enhance the specification (e.g. by removing
ambiguous sections). While performing our study, there was only one vendor that
implemented the latest version of QUIC.

There are also other fuzzers than Afl and LibFuzzer. Two interesting ones are VUzzer
and AutoFuzz. The first one is an application-aware evolutionary fuzzer. It was
shown that VUzzer was able to find bugs with less inputs compared to Afl. It does
so by analyzing application behavior. The second one is more specifically created for
network protocol implementations as it functions as a man-in-the-middle. It is able
to learn message syntax, fields and types by applying techniques from bioinformatics.
It was able to find bugs in implementations of the file transfer protocol (FTP).

We did not use them for this study because we did not get them up and running.
For example, AutoFuzz only works on Windows machines and VUzzer does not have
extensive documentation on how to use them. Another reason was the limited time
we had to perform fuzzing.

In this thesis we have studied QUIC and even though we did not find new bugs, it
still remains important to go on patrol, conduct research and test whether applications
are secure. Especially, with initiatives like Google’s fuzzing program, it does not
only help software developers and users but can make you rich as well.
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AAppendix A: LibFuzzer code

1 s td : : unique_ptr<net : : ProofSource> CreateProofSource ( const base : :
F i l ePa th& cer t_path , const base : : F i l ePa th& key_path ) {

2 s td : : unique_ptr<net : : ProofSourceChromium> proof_source (
new net : : ProofSourceChromium () ) ;

3 return s td : : move( proof_source ) ;
4 }
5
6 extern "C" int LLVMFuzzerTestOneInput ( const u in t8_ t * data , s i z e _ t

s i z e ) {
7 // I n s t a n t i a t e the Qu i cS imp l eSe rve r
8 base : : AtExitManager exit_manager ;
9 base : : MessageLoopForIO message_loop ;

10
11 net : : QuicConfig con f i g ;
12 net : : QuicHttpResponseCache response_cache ;
13 response_cache . I n i t i a l i z e F r o m D i r e c t o r y ( " / Users /

abdu l l ahrasoo l /Documents/chromium/ quic−data /www.
example . org " ) ;

14
15 QuicSimpleServer s imp le_se rve r (
16 CreateProofSource ( base : : F i l ePa th ( " net / t o o l s / quic /

c e r t s / out / l e a f _ c e r t . pem" ) , base : : F i l ePa th ( " net
/ t o o l s / quic / c e r t s / out / l e a f _ c e r t . pem" ) ) ,

17 conf ig ,
18 net : : QuicCryptoServerConf ig : : Conf igOpt ions () ,
19 net : : A l lSuppor tedVers ions () ,
20 &response_cache
21 ) ;
22
23 // C a l l our custom s e r v e r f u n c t i o n tha t r e c e i v e s the data

as parameter i n s t e a d o f from a s o c k e t
24 s imp le_se rve r . ParseMessageForFuzzing (( char *) data ,

static_cast<int>(s i z e ) ) ;
25
26 return 0;
27 }
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BAppendix B: Learned model
without 0-RTT
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CAppendix C: Learned model with
0-RTT
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